Zusammenfassung
Somatische konstitutiv aktive Mutationen im TSH-Rezeptor-Gen sind in ca. 60 % der
autonomen Schilddrüsen-Adenome und in bis zu 45 % der heißen Knoten hyperthyreoter
multinodulärer Strumen nachweisbar. TSH-Rezeptor-Keimbahnmutationen wurden in Familien
mit autosomal dominanter nicht-autoimmuner Hyperthyreose gefunden. Bei malignen Schilddrüsenerkrankungen
ist die molekulare Diagnostik vor allem für den Nachweis von Mutationen im RET-Protoonkogen
bei medullärem Schilddrüsenkarzinom etabliert.
Abstract
The reported frequency of constitutively activating TSH-receptor mutations in toxic
thyroid nodules averages 60 %. In hot nodules of toxic multinodular goitres somatic
constitutively activating TSHR mutations were found in up to 45 %. Constitutively
activating germ line mutations in the TSH-receptor gene occur in families with autosomal
dominant nonautoimmune hyperthyroidism. Concerning malignant thyroid diseases molecular
methods are particularly available for the detection of RET-mutations in medullary
thyroid carcinomas.
Schlüsselwörter
Autonomie - TSH-Rezeptormutation - medulläres Schilddrüsenkarzinom - Familienscreening
Key words
Thyroid autonomy - TSH-receptor mutation - medullary thyroid carcinoma - family screening
Literatur
- 1
Kohn L D, Shimura H, Shimura Y. et al .
The thyrotropin receptor.
Vitam Horm.
1995;
50
287-384
- 2
Nagayama Y, Rapoport B.
The thyrotropin receptor 25 years after its discovery: new insight after its molecular
cloning.
Mol Endocrinol.
1992;
6
145-156
- 3
Vassart G, Dumont J E.
The thyrotropin receptor and the regulation of thyrocyte function and growth.
Endocr Rev.
1992;
13
596-611
- 4
Lyons J, Landis C A, Harsh G. et al .
Two G protein oncogenes in human endocrine tumors.
Science.
1990;
249
655-659
- 5
Parma J, Duprez L, Van Sande J. et al .
Somatic mutations in the thyrotropin receptor gene cause hyperfunctioning thyroid
adenomas.
Nature.
1993;
365
649-651
- 6
Paschke R, Ludgate M.
The thyrotropin receptor in thyroid diseases.
N Engl J Med.
1997;
337
1675-1681
- 7
Trulzsch B, Krohn K, Wonerow P. et al .
Detection of thyroid-stimulating hormone receptor and Gsalpha mutations: in 75 toxic
thyroid nodules by denaturing gradient gel electrophoresis.
J Mol Med.
2001;
78
684-691
- 8
Holzapfel H P, Fuhrer D, Wonerow P, Weinland G, Scherbaum W A, Paschke R.
Identification of constitutively activating somatic thyrotropin receptor mutations
in a subset of toxic multinodular goiters.
J Clin Endocrinol Metab.
1997;
82
4229-4233
- 9
Parma J, Duprez L, Van Sande J. et al .
Diversity and prevalence of somatic mutations in the thyrotropin receptor and Gs alpha
genes as a cause of toxic thyroid adenomas.
J Clin Endocrinol Metab.
1997;
82
2695-2701
- 10
Duprez L, Parma J, Van Sande J. et al .
Germline mutations in the thyrotropin receptor gene cause non-autoimmune autosomal
dominant hyperthyroidism.
Nat Genet.
1994;
7
396-401
- 11
Holzapfel H P, Wonerow P, von Petrykowski W, Henschen M, Scherbaum W A, Paschke R.
Sporadic congenital hyperthyroidism due to a spontaneous germline mutation in the
thyrotropin receptor gene.
J Clin Endocrinol Metab.
1997;
82
3879-3884
- 12
Clifton-Bligh R J, Gregory J W, Ludgate M. et al .
Two novel mutations in the thyrotropin (TSH) receptor gene in a child with resistance
to TSH.
J Clin Endocrinol Metab.
1997;
82
1094-1100
- 13
Nagashima T, Murakami M, Onigata K. et al .
Novel inactivating missense mutations in the thyrotropin receptor gene in Japanese
children with resistance to thyrotropin.
Thyroid.
2001;
11
551-559
- 14
Paschke R.
Constitutively activating TSH receptor mutations as the cause of toxic thyroid adenoma,
multinodular toxic goiter and autosomal dominant non autoimmune hyperthyroidism.
Exp Clin Endocrinol Diabetes.
1996;
104 (Suppl 4)
129-132
- 15
Schwab K O, Sohlemann P, Gerlich M. et al .
Mutations of the TSH receptor as cause of congenital hyperthyroidism.
Exp Clin Endocrinol Diabetes.
1996;
104 (Suppl 4)
124-128
- 16
Eng C, Smith D P, Mulligan L M. et al .
Point mutation within the tyrosine kinase domain of the RET proto-oncogene in multiple
endocrine neoplasia type 2 B and related sporadic tumours.
Hum Mol Genet.
1994;
3
237-241
- 17
Bongarzone I, Vigano E, Alberti L. et al .
The Glu632-Leu633 deletion in cysteine rich domain of Ret induces constitutive dimerization
and alters the processing of the receptor protein.
Oncogene.
1999;
18
4833-4838
- 18
Huang S C, Koch C A, Vortmeyer A O. et al .
Duplication of the mutant RET allele in trisomy 10 or loss of the wild-type allele
in multiple endocrine neoplasia type 2-associated pheochromocytomas.
Cancer Res.
2000;
60
6223-6226
- 19
Berndt I, Reuter M, Saller B. et al .
A new hot spot for mutations in the ret protooncogene causing familial medullary thyroid
carcinoma and multiple endocrine neoplasia type 2 A.
J Clin Endocrinol Metab.
1998;
83
770-774
- 20
Niccoli-Sire P, Murat A, Rohmer V. et al .
Familial medullary thyroid carcinoma with noncysteine ret mutations: phenotype-genotype
relationship in a large series of patients.
J Clin Endocrinol Metab.
2001;
86
3746-3753
- 21
Eng C, Mulligan L M, Smith D P. et al .
Low frequency of germline mutations in the RET proto-oncogene in patients with apparently
sporadic medullary thyroid carcinoma.
Clin Endocrinol (Oxf).
1995;
43
123-127
- 22
Modigliani E, Cohen R, Campos J M. et al .
Prognostic factors for survival and for biochemical cure in medullary thyroid carcinoma:
results in 899 patients. The GETC Study Group. Groupe d'etude des tumeurs a calcitonine.
Clin Endocrinol (Oxf).
1998;
48
265-273
- 23
Stjernholm M R, Freudenbourg J C, Mooney H S, Kinney F J, Deftos L J.
Medullary carcinoma of the thyroid before age 2 years.
J Clin Endocrinol Metab.
1980;
51
252-253
- 24
Skinner M A, DeBenedetti M K, Moley J F, Norton J A, Wells S A.
Medullary thyroid carcinoma in children with multiple endocrine neoplasia types 2
A and 2 B.
J Pediatr Surg.
1996;
31
177-181
- 25
Sozzi G, Bongarzone I, Miozzo M. et al .
A t(10;17) translocation creates the RET/PTC2 chimeric transforming sequence in papillary
thyroid carcinoma.
Genes Chromosomes Cancer.
1994;
9
244-250
- 26
Lam K Y, Lo C Y, Leung P S.
High prevalence of RET proto-oncogene activation (RET/PTC) in papillary thyroid carcinomas.
Eur J Endocrinol.
2002;
147
741-745
- 27
Larsson C, Skogseid B, Oberg K, Nakamura Y, Nordenskjold M.
Multiple endocrine neoplasia type 1 gene maps to chromosome 11 and is lost in insulinoma.
Nature.
1988;
332
85-87
- 28
Chandrasekharappa S C, Guru S C, Manickam P. et al .
Positional cloning of the gene for multiple endocrine neoplasia-type 1.
Science.
1997;
276
404-407
- 29
Guru S C, Goldsmith P K, Burns A L. et al .
Menin, the product of the MEN1 gene, is a nuclear protein.
Proc Natl Acad Sci USA.
1998;
95
1630-1634
- 30
Agarwal S K, Guru S C, Heppner C. et al .
Menin interacts with the AP1 transcription factor JunD and represses JunD-activated
transcription.
Cell.
1999;
96
143-152
- 31
Agarwal S K, Kester M B, Debelenko L V. et al .
Germline mutations of the MEN1 gene in familial multiple endocrine neoplasia type
1 and related states.
Hum Mol Genet.
1997;
6
1169-1175
- 32
Bassett J H, Forbes S A, Pannett A A. et al .
Characterization of mutations in patients with multiple endocrine neoplasia type 1.
Am J Hum Genet.
1998;
62
232-244
- 33
Mutch M G, Dilley W G, Sanjurjo F. et al .
Germline mutations in the multiple endocrine neoplasia type 1 gene: evidence for frequent
splicing defects.
Hum Mutat.
1999;
13
175-185
- 34
Kassem M, Kruse T A, Wong F K, Larsson C, Teh B T.
Familial isolated hyperparathyroidism as a variant of multiple endocrine neoplasia
type 1 in a large Danish pedigree.
J Clin Endocrinol Metab.
2000;
85
165-167
Prof. Dr. med. R. Paschke
Medizinische Klinik und Poliklinik III · Universität Leipzig
Philipp-Rosenthal-Str. 27
04103 Leipzig
Phone: +49-3 41-9 71 32 00
Fax: +49-3 41-9 71 32 09
Email: pasr@medizin.uni-leipzig.de